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Abstract Nitric oxide (NO), salicylic acid (SA), and

reactive oxygen species (ROS) are important signal mole-

cules that mediate plant resistance reactions and play

important roles in secondary metabolism. To research the

signal transduction pathway of the endophytic fungal

elicitor from Fusarium sp. E5 promoting secondary

metabolism in Euphorbia pekinensis suspension cells, the

changes in NO, SA, ROS, and isoeuphpekinensin contents

in the cells were investigated after elicitor addition to the

cell suspension culture. The elicitor did not change H2O2 or

O2
- contents notably, whereas NO and SA contents were

enhanced. Both the NO donator sodium nitroprusside

(SNP) and SA enhanced isoeuphpekinensin content in the

absence of the fungal elicitor, whereas the NO scavenger

cPTIO and SA biosynthesis inhibitor cinnamic acid (CA)

inhibited isoeuphpekinensin accumulation in the presence

of the elicitor. In addition, cPTIO inhibited SA production

induced by the fungal elicitor. CA did not inhibit NO

production, but it significantly inhibited isoeuphpekinensin

accumulation. The results demonstrated that in Euphorbia

pekinensis suspension cells the endophytic fungal elicitor

induced increased NO content and SA production, which

promoted isoeuphpekinensin accumulation. ROS are clearly

not involved in the endophytic fungus–host interaction sig-

naling pathway.
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Introduction

Synthesis pathways of important medicinal secondary

metabolites in plants have been studied extensively in recent

years because they often have some efficacy in treating

human diseases, such as paclitaxel for cancer (Wang and

others 2001) and shikonin for the human immunodeficiency

virus (Li and others 2009; Wu and others 2009). Traditional

cultivation methods struggle to meet the demand for

medicinal herbs because of increasingly serious environ-

mental pollution. Consequently, many studies have focused

on methods to improve the yield of plant secondary metab-

olites in cell suspensions, because the environmental con-

ditions can be precisely and easily controlled, and they show

high yield potential and trait stability. Existing methods are

changing medium conditions, precursor feeding, and two-

phase cultivation, but addition of a pathogenic fungal elicitor

is the most rapidly effective and induces the steepest increase

in production. A downside of this method is that the elicitor

leads to premature aging of the plant cells and a consequent

decline in biomass (Petrini 1991; Yuan and others 2002), and

consequently overall secondary metabolite production

clearly is not increased.

Endophytic fungi are an intriguing group of organisms

that live within tissues and organs of higher plants for part

of their life cycle without causing obvious symptoms of

infection (Dai and others 2008). These fungi can stimulate

a variety of secondary metabolic processes, promote plant

growth (Lewis 2004), and indirectly increase plant resis-

tance to protect plants against environmental stress
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(Tanaka and others 2005; Vega and others 2008; Hao and

others 2010). Our previous study showed the endophytic

fungus Fusarium sp. E5, isolated from endothelial stem

cells of Euphorbia pekinensis, which is a Chinese medic-

inal herb used to treat dropsy, hepatocirrhosis, and ascite

infections, improved the survival rate of E. pekinensis tis-

sue cultures and increased diterpene and triterpene contents

in 1-year-old roots of E. pekinensis transplanted to a

greenhouse (Yong and others 2009). In addition, an elicitor

isolated from E5 mycelium and added to E. pekinensis

suspension cell cultures significantly increased diterpene

and triterpene contents, and the cells did not age prema-

turely but remained stable for a longer period of time

(unpublished data). Similar reports are rare; therefore, the

internal mechanisms by which endophytic fungi promote

the synthesis of secondary metabolites in E. pekinensis are

worthy of further study.

Nitric oxide (NO) is a small water-soluble and fat-sol-

uble molecule whose role in human and animal nervous,

cardiovascular, and immune systems has been studied

extensively. In recent years there has been much progress

in research into NO in plants, with reports that NO is a

signaling molecule regulating plant growth, development,

and defense responses (Delledonne and others 1998; Neill

and others 2002; Zhang and others 2008). Many reports

indicate that NO plays a key regulatory role in promotion

by fungal elicitors of the accumulation of plant secondary

metabolites. Fang and others (2009) proved that NO is a

signaling molecule of the endophytic fungal Cunning-

hamella sp. AL4 elicitor which induces volatile oil syn-

thesis in Atractylodes lancea suspension cells.

Salicylic acid (SA) is an inducer of plant systemic

acquired resistance (SAR) in plant–pathogen interactions

and rapidly accumulates at the site of pathogen invasion and

spreads to other parts of the plant, causing a general defen-

sive reaction. Fungal elicitors can also stimulate SA accu-

mulation in plant cells, but many studies indicate that the

accumulation of many secondary metabolites is not depen-

dent on SA, which might suggest the accumulation of plant

secondary metabolites is a local but systemic reaction (Zhao

and others 2005). However, in some plants, SA can indeed

induce synthesis of secondary metabolites related to gene

expression. SA can stimulate tropane alkaloid synthesis in

Scopolia parviflora and induce expression of related genes

(Kanga and others 2004). Penicillium citrinum Thom elici-

tor stimulates puerarin synthesis in lobed kudzuvine sus-

pension cells, and the elicitor-induced biosynthesis of

puerarin increases are dependent on the intermediate sig-

naling molecule SA (Xu and Dong 2005). In addition, an

‘‘oxidative burst’’ always occurred in plant cells under

pathogen and elicitor treatment (Baker and Orlandi 1995),

and reactive oxygen species (ROS) act as signaling mole-

cules in fungal elicitor-induced synthesis of secondary

metabolites (Srivastava and others 2009). To study the

function and relationship of NO, SA, and H2O2 signaling

molecules, we added an elicitor prepared from the fungal

endophyte Fusarium sp. E5 to E. pekinensis cell suspen-

sion cultures to investigate the signaling pathway of

isoeuphpekinensin synthesis in E. pekinensis.

Materials and Methods

Cell Suspension Culture and Treatments

Euphorbia pekinensis plants were collected from Langya

Mountain, Anhui, China. The suspension cell line was

obtained from the procedures described in our previous

report (Dai and others 2005a). The culture medium was MS

medium (Murashige and Skoog 1962) supplemented with

0.4 mg l-1 naphthalene acetic acid (NAA), 2.0 mg l-1

6-benzyladenine (6-BA), and 30 g l-1 sucrose. The med-

ium’s pH was adjusted to 5.8 before autoclaving. Cultures

were shaken at 120 rpm in darkness at 25�C in 100-ml

Erlenmeyer flasks and subcultured every 2 weeks.

All exogenous signaling molecules and inhibitors were

filtered using a 0.22-lm-diameter microporous membrane.

Unless stated otherwise, inhibitors were applied 30 min

before application of signaling molecules.

Endophytic Fungal Elicitor Preparation and Treatment

The endophytic fungus Fusarium sp. E5 was isolated from

E. pekinensis (Dai and others 2005b), cultured on potato

dextrose agar, and incubated at 28�C. From 7-day-old cul-

tures, 1 cm2 of mycelia was transferred to a 250-ml Erlen-

meyer flask containing 80 ml potato dextrose medium, and

the mycelia were maintained in the medium at 150 rpm at

28�C until harvest. When harvesting, the mycelia were fil-

tered and ground with a mortar and a pestle. The homogenate

was diluted in water (10 g l-1) and autoclaved for 20 min at

121�C. The autoclaved fungal suspension was used as the

elicitor (Yu and others 2001). The amount of fungal extract

was determined by the phenol-sulfuric acid method using

glucose as a standard (Dubois and others 1956).

Elicitor treatments of the 14-day-old E. pekinensis cul-

tures were at the rate of 7.85 mg l-1 carbohydrate equiv-

alents. In the meantime, a control was inoculated with an

equal volume of sterile double-distilled water.

Measurement of H2O2

Active oxygen species in the medium of suspension-cul-

tured E. pekinensis cells were measured by chemilumi-

nescence in a ferricyanide-catalyzed oxidation of luminol.

A 100-ll aliquot of the medium (cells had been removed
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by filtration through a nylon net or a column), 50 ll

luminol (5-amino-2,3-dihydro-l,4-phthalazinedione)

(1.1 mM in KPi buffer, 50 mM, pH 7.9), and 800 ll KPi

buffer (50 mM, pH 7.9) were mixed in a cuvette. The

reaction was initiated with 100 ll K3[Fe(CN)6] (14 mM in

H2O, freshly prepared). The assay method was according

to Schwacke and Hager (1992). To compare independent

experiments we used an internal standard of H2O2. Fifty ll

of H2O2 (1 lM, freshly prepared) was added to the assay

mixture containing 750 ll KPi buffer. One U of H2O2

concentration was defined as the chemiluminescence

caused by the internal standard of 1 lM H2O2.

Superoxide Anion Assay

The amount of superoxide anion in leaves was detected

using the nitro blue tetrazolium (NBT) colorimetric

method. The basic principle was to use NBT transformed in

the presence of O2
- into NBT formazan, which shows a

maximum absorption peak at 530 nm. Euphorbia pekin-

ensis cells were washed with 10 mM PBS (pH 7.8) three

times, then resuspended in 10 mM PBS containing 1%

(w/v) sucrose and 0.5 mM CaCl2 (0.1 g FW cells ml-1) for

3 h, after which 20 lM NBT and elicitor were added.

Five ml of suspension-cultured cell filtrate after different

treatment times were used to measure absorbance at

530 nm. The untreated filtrate was used as the control.

Measurement of NO

The amount of NO in the suspension cells of the different

treatments was measured spectrophotometrically. Suspen-

sion-cultured cells were filtered with a microporous

membrane at 4�C. A mixture of 1 ml filtrate and 1 ml

Greiss reagent was incubated at room temperature for

30 min. Absorbance was determined at 550 nm. The NO

content was calculated by comparison to a standard curve

for NaNO2. Measurements were recorded for five indi-

vidual plants as biological replicates.

Measurement of SA

Extraction and analysis of SA followed the method of

Verberne and others (2002) with some modifications.

One g of cells was ground in liquid nitrogen and extracted

with 2 ml methanol using sonication. After centrifugation

at 14,0009g for 5 min, the supernatant was collected for

rotary evaporation, and the residue was resuspended with

250 ll of 5% trichloroacetic acid. The mixture was re-

extracted with 800 ll acetic acid ester:cyclohexane (1:1

v/v) and mixed well; then the organic phase was rotary

evaporated until dry, dissolved with 600 ll organic phase,

and filtered with a 0.2-lm microporous membrane.

SA was quantified by high-performance liquid chroma-

tography (HPLC) using a reverse-phase column (Hedera

Packing Material Lichrospher 5-C18, 4.6 9 200 mm2,

5 lm). The mobile phase was methanol:H2O (80:20 v/v) at

1 ml min-1 and detected at 217 nm at 25�C.

Phenylalanine Ammonia-Lyase Activity

Phenylalanine ammonia-lyase (PAL) activity was analyzed

following the method of Modafar and others (2001) with

some modifications. Cells (500 mg) were homogenized for

2 min in 5 ml of 0.1 M borate buffer (pH 8.8) containing

600 mg polyvinylpyrrolidone, 5 mM b-mercaptoethanol,

and 2 mM EDTA. The homogenate was centrifuged for

15 min at 14,0009g and the supernatant was collected for

enzyme activity determination. The PAL activity was mea-

sured by incubating 0.5 ml supernatant with 2 ml of 0.1 M

borate buffer (pH 8.0) containing 3 mM L-phenylalanine for

1 h at 30�C. The increase in absorbance at 290 nm because

of the formation of trans-cinnamate was measured spectro-

photometrically. The PAL activity was expressed as the

change in OD290 per hour per gram of fresh weight. One U is

equivalent to a 0.01 increase in absorbance in OD290.

The cells in the suspension cultures were filtered under

vacuum. The dry weight (DW) was obtained by drying the

fresh cell mass at 50�C in an oven until constant weight,

and both the DW and the fresh weight (FW) were recorded

with a physical balance. All the experiments were repeated

three times.

Extraction and Analysis of Isoeuphpekinensin

Dried cells (500 mg) were ground to a powder, then soni-

cated for 30 min in 30 ml methanol. The extract solution was

filtered and evaporated, and the residue was dissolved in

1 ml methanol. The solution samples were transferred to an

Eppendorf tube and centrifuged at 12,0009g for 5 min. The

supernatant was filtered through a 0.45-lm membrane and

transferred to clean glass vials for high-performance liquid

chromatography (HPLC) analysis. The isoeuphpekinensin

content was determined by HPLC using a reverse-phase

column (Hedera Packing Material Lichrospher 5-C18,

4.6 9 200 mm2, 5 lm). The mobile phase was metha-

nol:H2O (80:20 v/v) at 1 ml min-1 for isoeuphpekinensin.

Isoeuphpekinensin was detected at 268 nm at 30�C. The

isoeuphpekinensin and euphol standards were obtained from

Dr. Qiao-Li Liang (Liang and others 2008).

Statistical Analysis

The mean and standard error were calculated for each

biochemical measurement. All data were analyzed by
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repeated analysis of variance (ANOVA) to compare the

differences between treatments using SPSS v13.0 (IBM

Corporation, Somers, NY, USA).

Results

Effect of Elicitor on NO Production, PAL Activity,

and SA and Isoeuphpekinensin Accumulation

The NO content of E. pekinensis cells increased following

elicitor addition and peaked after 7.5 h, the value of which

was 2.9-fold that of the control, then decreased gradually to

the control level after 20 h (Fig. 1a). The NO content of the

same culture without elicitor remained at a low level

throughout the experimental period (Fig. 1a).

Catalysis of PAL is the first step in the phenylpropanoid

metabolic pathway and is the first rate-limiting enzyme of

SA biosynthesis. PAL activity is considered to be the major

source of SA in plant cells (Mauch-Mani and Slusarenko

1996). Activity of PAL increased in response to elicitor

addition and peaked after 10 h, the value of which was

3.2-fold that of the control, then decreased gradually but

remained slightly higher than that of the control (Fig. 1b).

The SA level first increased after 12.5 h, then decreased and

returned to the control level after 20 h (Fig. 1c). Thus, NO

production was first stimulated by the endophytic fungal

elicitor, then activation of PAL, followed by SA accumulation.

Isoeuphpekinensin content peaked on the fourth day of

elicitor treatment and was 2.4-fold that of the control

(Fig. 1d). Subsequently, the isoeuphpekinensin content

decreased gradually to be more similar to that of the con-

trol after 7 days. The isoeuphpekinensin content of the

control peaked at 5.19 g g-1 DW on the sixth day

(Fig. 1d). In sum, endophytic fungal elicitor improved the

isoeuphpekinensin accumulation of E. pekinensis suspen-

sion culture significantly, and it also made the peak con-

centration emerge 2 days ahead of control; this is important

for industrial production.

Effect of ROS on Isoeuphpekinensin Accumulation

To understand the role of ROS in the host reaction to the

endophytic fungal elicitor, we first measured the H2O2 and

O2
- contents of E. pekinensis suspension cultures with

elicitor applied on day 14. The H2O2 and O2
- levels did not

change significantly within 25 h (Fig. 2a, b). Then we

determined the isoeuphpekinensin content of E. pekinensis
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Fig. 1 The effects of elicitor on NO accumulation, PAL activation,

SA accumulation, and isoeuphpekinensin accumulation of E. pekin-
ensis cultures. a Effects on NO accumulation. b Effects on PAL

activation. c Effects on the accumulation of SA. d Effects on

isoeuphpekinensin accumulation. Values are the mean of three

replicates ± standard error
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suspension cultures with ROS applied on day 14. The H2O2

and O2
- (flavin oxidase and flavin) contents did not affect

isoeuphpekinensin content compared to the control

(Fig. 2c).

Isoeuphpekinensin accumulation was unaffected by

addition of diphenyleneiodonium (DPI), a NADPH oxidase

inhibitor (Rosenwasser and others 2010), and the H2O2

scavenger catalase (CAT) to E. pekinensis suspension

cultures. In addition, DPI and CAT plus elicitor individu-

ally did not change isoeuphpekinensin content (Fig. 2d).

Thus, ROS were not involved in isoeuphpekinensin bio-

synthesis in E. pekinensis.

Effects of cPITO and CA on NO Production, PAL

Activation, and SA Accumulation

To determine the relationship between the signal molecules

NO and SA, we investigated NO and SA contents of

E. pekinensis suspension cultures after addition of 2,4-car-

boxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

(cPTIO) (a NO scavenger) and CA (a SA inhibitor). CPTIO

significantly reduced the elicitor-induced stimulation of

NO, but CA did not have the same effect (Fig. 3a). This

result implied that SA does not mediate NO production.

However, cPTIO reduced elicitor-induced PAL activation

and SA accumulation (Fig. 3b), which indicates that NO

production is located upstream of SA signaling, PAL

activation, and induction of SA accumulation.

Effects of NO and SA on Isoeuphpekinensin

Biosynthesis

To confirm the role of NO and SA in isoeuphpekinensin

biosynthesis induced by the endophytic fungal elicitor, we

investigated the impact of these signaling molecules and

inhibitors of their synthesis on isoeuphpekinensin biosyn-

thesis. The elicitor, SNP, and SA significantly increased

isoeuphpekinensin biosynthesis, whereas cPTIO and CA

inhibited isoeuphpekinensin biosynthesis (Fig. 4), which

indicated that NO and SA play a key role in isoeuphpeki-

nensin biosynthesis induced by the endophytic fungal

elicitor. Furthermore, CA suppressed stimulation of
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Fig. 2 The effects of ROS on isoeuphpekinensin accumulation.

a Effects of elicitor on H2O2 accumulation. b Effects of elicitor on

O2
- accumulation. c Effects of O2

- and H2O2 on isoeuphpekinensin

accumulation. I Control, II elicitor, III 0.5 mM H2O2, IV 1.0 mM

H2O2, V elicitor ? 0.5 mM H2O2, VI elicitor ? 0.5 mM H2O2, VII
0.5 mM flavin ? flavin oxidase, VIII 1 mM flavin ? flavin oxidase,

IX elicitor ? 0.5 mM flavin ? flavin oxidase, X elicitor ? 1 mM

flavin ? flavin oxidase. d Effects of DPI and CAT on

isoeuphpekinensin accumulation; inhibitors were applied 30 min

before ROS. I control, II elicitor, III 2 mkat/L CAT, IV 4 mkat/L

CAT, V elicitor ? 2 mkat/L CAT, VI elicitor ? 4 mkat/L CAT, VII
0.5 mM DPI, VIII 1 mM DPI, IX elicitor ? 0.5 mM DPI, X elici-

tor ? 1 mM DPI. Cells were harvested 4 h after treatment. Values are

the mean of three replicates ± standard error. Bars with different
capital letters indicate significant differences at p \ 0.01
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isoeuphpekinensin biosynthesis induced by SNP, exoge-

nous SA reversed the inhibition of isoeuphpekinensin

biosynthesis by cPTIO and CA, and cPTIO did not inhibit

the promotion of isoeuphpekinensin biosynthesis induced

by SA (Fig. 4). These results proved that SA is located

downstream of the signaling pathway of isoeuphpekinensin

biosynthesis. Collectively, our results implied that the

signaling pathway of isoeuphpekinensin biosynthesis in E.

pekinensis suspension cells induced by the endophytic

fungal elicitor was as follows: the endophytic fungal elic-

itor induced NO production, which mediated iso-

euphpekinensin biosynthesis dependent on SA (Fig. 5).

Discussion

Fungal components can be used as an elicitor, which can

evoke multiple responses in plant cells, including produc-

tion of a variety of secondary metabolites (Modafar and

others 2001). However, the mechanisms of signal trans-

duction in the fungal elicitor-evoked synthesis of secondary

metabolites in plant cells are unclear. Generally, it is

believed that a fungal elicitor applied as an extracellular

stimulus first recognizes and binds to a specific receptor on

the plant cell membrane, thus stimulating the cells to pro-

duce a specific intracellular messenger and regulate the

expression of nuclear genes through the corresponding

signal transduction pathways (Nürnberger and others 1994),

and ultimately activate defensive secondary metabolic

systems for synthesis of secondary metabolites. Under

biotic stress such as fungal infection, plant cells sense and

transmit stress signals by a variety of signaling molecules

and signaling pathways (Ligterink and others 1997). Cross-

talk between signaling molecules has been reported. Xu and

others (2005) found that hypericin biosynthesis from hy-

pericum cells mediated by the NO pathway depended on JA.

In the present study, we showed that an endophytic fungal

elicitor induces NO production, and NO-mediated iso-

euphpekinensin biosynthesis in E. pekinensis suspension

cells is dependent on SA. ROS is not involved in the

mediation process, which is notably different from the host

response to pathogenic fungal infection associated with the

ROS production phenomenon (Fig. 5). In addition, NO and

SA levels peaked at 7.5 and 12.5 h, respectively, after

addition of the fungal elicitor, while isoeuphpekinensin

accumulation peaked on day 4. These results implied that

NO and SA act as signals to initiate continuous biosynthesis

of secondary metabolites in the host plant.

Many studies have focused on pathogen elicitor-induced

plant secondary metabolite accumulation and the signaling
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Fig. 5 Signaling model of isoeuphpekinensin accumulation induced

by endophytic fungal elicitor
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transduction pathway (for example, Schwacke and Hager

1992). Wu and others (2009) demonstrated that NO induced

expression of the shikonin biosynthesis genes PAL, HMGR,

and PGT, and shikonin synthesis. SA enhanced accumula-

tion of secondary metabolites and expression of defense

genes in Scopolia parviflora (Kang and others 2004; Wang

and others 2004; Chen and others 2006).

A pathogen elicitor initially induces the synthesis of tar-

get compounds, of which the accumulation quickly peaks,

but also leads to accelerated aging of plant cells, which

prematurely enter the decline phase. Consequently, the

synthesis of target compounds is not significantly increased

(Petrini 1991; Yuan and others 2002). However, endophytes,

as microorganisms that colonize plants in the long term,

formed a mutually beneficial symbiotic relationship with

host plants in the long-term evolution of the ecosystem, so it

is different from the pathogen–host interaction. Our previous

studies showed that the endophytic fungus Fusarium sp. E5,

isolated from endothelial stem cells of E. pekinensis,

increases isoeuphpekinensin production and promotes pro-

liferation of E. pekinensis suspension cells, but the mecha-

nisms underlying both the increasing phenomenon of

isoeuphpekinensin production and cell proliferation are not

yet clear. This research indicates that the endogenous fungal

elicitor does not cause the oxidative burst in E. pekinensis

cells and ROS do not play a role in the signaling pathway of

elicitor-induced isoeuphpekinensin synthesis; this differs

markedly from other host plant responses to pathogen elic-

itors. ROS are an important signal that mediates some plant

defense responses and phytoalexin accumulation, promotes

generation of other signaling molecules (Mehdy 1994), and

induces the hypersensitive response and other defense

responses in plants. However, the mechanism by which ROS

regulate fungal elicitor-induced production of plant sec-

ondary metabolites is unclear. ROS are believed to induce

expression of defense genes and secondary metabolite bio-

synthesis genes such as sesquiterpene synthase and PAL

(Baker and Orlandi 1995). In wheat inoculated with patho-

genic and nonpathogenic strains of Puccinia striiformis f. sp.

tritici, H2O2 and O2
- levels were higher in response to the

pathogenic strain than the nonpathogenic strain (Neill and

others 2002). This finding implied that accumulation of

H2O2 related to programmed cell death was closely associ-

ated with pathogen infection. Thus, it is hypothesized that

ROS levels showed little change when E. pekinensis cells

were incubated with the endophytic fungus Fusarium sp. E5

because the fungus is symbiotic with E. pekinensis and does

not cause any disease. On the other hand, Kawano and Muto

(1999) found that H2O2 content was reduced by SA via

peroxidase catalysis in a tobacco cell suspension culture.

In the present study, we investigated the signaling

pathway of isoeuphpekinensin biosynthesis in E. pekinen-

sis. Unraveling the precise relationship between NO and

SA and excluding the function of ROS in the process will

certainly improve our understanding of endophyte symbi-

osis with the host plant to enhance production of plant

secondary metabolites. Moreover, the difference in sig-

naling between pathogen–host and endophyte–host inter-

actions is an intriguing topic for future exploration.
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